一、二阶常微分方程解法总结 1、理解方程形式和特点:首先需要理解二阶常微分方程的形式和特点,明确未知函数和其导数的关系,以及方程的系数和常数项。2、观察方程形式:通过观察方程的形式,我们可以初步判断其可能属于哪种类型,例如,是线性方程还是非线性方程,是否有特定符号或系数等。3、选择合适的解...
二阶微分方程解法总结:可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。多项式法:设常系数线性微分方程y''+py'+qy =pm,(x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) ...
第一步,求②式(齐次方程)通解,(参照上面一的方法)第二步,求①式特解。根据①式根据f(x)类型分成两种求解方式 :1.f(x) = P(x) * e^(λx)特解: y* = x^k * Pm(x) * e^λx】④(Pm(x) 为与P(x)同次的多项式,k是根据λ 不是③式的根(特征根)、单根、重复根依次取值为...
1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+...
第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。拓展:二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是...